CONSPECIFIC FOOD COMPETITION EXPLAINS VARIABILITY IN COLONY SIZE: A TEST IN MAGELLANIC PENGUINS

Ecology ◽  
2002 ◽  
Vol 83 (12) ◽  
pp. 3466-3475 ◽  
Author(s):  
M. G. Forero ◽  
J. L. Tella ◽  
K. A. Hobson ◽  
M. Bertellotti ◽  
G. Blanco
PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119002 ◽  
Author(s):  
Luciana M. Pozzi ◽  
Pablo García Borboroglu ◽  
P. Dee Boersma ◽  
Miguel A. Pascual

2021 ◽  
Vol 168 (8) ◽  
Author(s):  
Melina Barrionuevo ◽  
Valentina Ferretti ◽  
Javier Ciancio ◽  
Esteban Frere

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dongge Guo ◽  
Jianan Ding ◽  
Heng Liu ◽  
Lin Zhou ◽  
Jiang Feng ◽  
...  

Abstract Background Why a variety of social animals emit foraging-associated calls during group foraging remains an open question. These vocalizations may be used to recruit conspecifics to food patches (i.e. food advertisement hypothesis) or defend food resources against competitors (food defence hypothesis), presumably depending on food availability. Insectivorous bats rely heavily on vocalizations for navigation, foraging, and social interactions. In this study, we used free-ranging big-footed myotis (Myotis macrodactylus Temminck, 1840) to test whether social calls produced in a foraging context serve to advertise food patches or to ward off food competitors. Using a combination of acoustic recordings, playback experiments with adult females and dietary monitoring (light trapping and DNA metabarcoding techniques), we investigated the relationship between insect availability and social vocalizations in foraging bats. Results The big-footed myotis uttered low-frequency social calls composed of 7 syllable types during foraging interactions. Although the dietary composition of bats varied across different sampling periods, Diptera, Lepidoptera, and Trichoptera were the most common prey consumed. The number of social vocalizations was primarily predicted by insect abundance, insect species composition, and echolocation vocalizations from conspecifics. The number of conspecific echolocation pulses tended to decrease following the emission of most social calls. Feeding bats consistently decreased foraging attempts and food consumption during playbacks of social calls with distinctive structures compared to control trials. The duration of flight decreased 1.29–1.96 fold in the presence of social calls versus controls. Conclusions These results support the food defence hypothesis, suggesting that foraging bats employ social calls to engage in intraspecific food competition. This study provides correlative evidence for the role of insect abundance and diversity in influencing the emission of social calls in insectivorous bats. Our findings add to the current knowledge of the function of social calls in echolocating bats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jacintha G. B. van Dijk ◽  
Samuel A. Iverson ◽  
H. Grant Gilchrist ◽  
N. Jane Harms ◽  
Holly L. Hennin ◽  
...  

AbstractAvian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population.


2012 ◽  
Vol 112 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Andrea Raya Rey ◽  
Klemens Pütz ◽  
Gabriela Scioscia ◽  
Benno Lüthi ◽  
Adrián Schiavini

2003 ◽  
Vol 69 (2) ◽  
pp. 787-795 ◽  
Author(s):  
Rainer Kurmayer ◽  
Guntram Christiansen ◽  
Ingrid Chorus

ABSTRACT The working hypotheses tested on a natural population of Microcystis sp. in Lake Wannsee (Berlin, Germany) were that (i) the varying abundance of microcystin-producing genotypes versus non-microcystin-producing genotypes is a key factor for microcystin net production and (ii) the occurrence of a gene for microcystin net production is related to colony morphology, particularly colony size. To test these hypotheses, samples were fractionated by colony size with a sieving procedure during the summer of 2000. Each colony size class was analyzed for cell numbers, the proportion of microcystin-producing genotypes, and microcystin concentrations. The smallest size class of Microcystis colonies (<50 μm) showed the lowest proportion of microcystin-producing genotypes, the highest proportion of non-microcystin-producing cells, and the lowest microcystin cell quotas (sum of microcystins RR, YR, LR, and WR). In contrast, the larger size classes of Microcystis colonies (>100 μm) showed the highest proportion of microcystin-producing genotypes, the lowest proportion of non-microcystin-producing cells, and the highest microcystin cell quotas. The microcystin net production rate was nearly one to one positively related to the population growth rate for the larger colony size classes (>100 μm); however, no relationship could be found for the smaller size classes. It was concluded that the variations found in microcystin net production between colony size classes are chiefly due to differences in genotype composition and that the microcystin net production in the lake is mainly influenced by the abundance of the larger (>100-μm) microcystin-producing colonies.


Sign in / Sign up

Export Citation Format

Share Document